

UNIVERSIDAD UTE

FACULTAD DE CIENCIAS DE LA INGENIERÍA E INDUSTRIAS CARRERA DE INGENIERÍA DE PETRÓLEOS

ANÁLISIS TÉCNICO ECONÓMICO DE LA OPTIMIZACIÓN DE LEVANTAMIENTO ARTIFICIAL EN POZOS PETROLEROS POR MEDIO DEL SOFTWARE PIPESIM EN EL ORIENTE ECUATORIANO

TRABAJO PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO DE PETRÓLEOS

AGUIRRE GOYES BRYAN PATRICIO

DIRECTOR: ING. LUIS CALLE GUADALUPE

Quito, octubre 2018

© Universidad UTE. 2018 Reservados todos los derechos de reproducción

FORMULARIO DE REGISTRO BIBLIOGRÁFICO PROYECTO DE TITULACIÓN

DATOS DE CONTACTO			
CÉDULA DE IDENTIDAD:	171678631-2		
APELLIDO Y NOMBRES:	AGUIRRE GOYES BRYAN PATRICIO		
DIRECCIÓN:	SEBASTIÁN DE BENALCÁZAR OE1-274 NEW CASTLE #3 (ARMENIA)		
EMAIL:	bpag711@gmail.com		
TELÉFONO FIJO:	023810529		
TELÉFONO MOVIL:	0960082333		

DATOS DE LA OBRA ANÁLISIS TÉCNICO ECONÓMICO DE LA OPTIMIZACIÓN DE **LEVANTAMIENTO** TITULO: ARTIFICIAL EN POZOS PETROLEROS POR MEDIO DE SOFTWARE PIPESIM EN **EL ORIENTE ECUATORIANO AUTOR O AUTORES**: AGUIRRE GOYES BRYAN PATRICIO **FECHA DE ENTREGA DEL PROYECTO DE 09 OCTUBRE 2018** TITULACIÓN: **DIRECTOR DEL** PROYECTO DE **CALLE GUADALUPE LUIS ALBERTO** TITULACIÓN: **PROGRAMA** PREGRADO **POSGRADO** TITULO POR EL QUE INGENIERO DE PETRÓLEOS OPTA: El análisis técnico económico para la optimización del sistema de levantamiento artificial por bombeo electrosumergible se realizó en tres pozos del campo Drago Norte **RESUMEN:** del oriente ecuatoriano. Para caracterizar los pozos que operaban en Donwtrust fue preciso considerar los siguientes criterios: sistema de levantamiento través de bombeo а electrosumergible, pozos fracturados en el

periodo marzo 2017 a marzo 2018, alta producción de fluido con una base de 500 barriles de petróleo por día (BPPD), producción de crudo mayor a la producción de agua y no más de un cambio de bomba electrosumergible en los pozos fracturados en estudio. Para periodo de el redimensionamiento se calculó las especificaciones de una bomba con datos actuales entregados por la ARCH; el cálculo de la gráfica de desempeño utilizó el software Pipesim, los datos necesarios para complementar el redimensionamiento de la bomba fueron, caudal máximo, índice de productividad y cabeza total dinámica. Con base en los resultados obtenidos se computó el número total de etapas y la potencia total requerida de la bomba. El análisis económico comparó los costos del consumo de energía eléctrica en kilovatios hora (kWh) de las bombas electrosumergibles que trabajan actualmente con los de las bombas propuestas, en el transcurso de un año. Los pozos seleccionados fueron: DRRD-028UI, operando con una potencia de 350 Hp y 350 etapas; DRRC-029UI, 188 Hp y 234 etapas; y DRRA-015UI, 180 Hp y 372 etapas. Como resultado se estableció que las bombas electrosumergibles de los pozos seleccionados requieren una bomba de menor capacidad, siendo para el pozo DRRD-028UI, 68 Hp y 247 etapas; para el pozo DRRC-029UI, 60 Hp y 312 etapas; y para el pozo DRRA-015UI 85 Hp y 236 etapas. La propuesta concluye que el cambio de bombas electrosumergibles generaría un ahorro de 307821 dólares al obtener una disminución en el consumo energético del 25% en el pozo DRRD-028UI, 32% del pozo DRRC-029UI y del 38% en el pozo DRRA-015UI.

PALABRAS CLAVES:

PIPESIM, ANÁLISIS TÉCNICO, ANÁLISIS NODAL, OPTIMIZACIÓN

ABSTRACT:

The economic and technical analysis was carried out to optimize the artificial lift system by electro-submersible pumping in three "Drago Norte" oil wells of the Ecuadorian amazon region. The characterize of the oil wells that behave in Donwtrust consider the following judgment: Artificial lift system by ESP, oil wells that were fractured in march 2017 to march 2018, high production of fluid with a base of 500 barrels a day, high production of oil and low rate of water, no more than one change of pump in the estimated period. For the resizing were computed the pump specifications with updated provided by the ARCH, the estimate of the performance graphics used the Pipesim software, the additional data required to supplement the resizing of the pumps were maximum flow rate, the productivity index and the IPR graphs. The information obtained served to determine the total feet of fluid that would lift the pump and total potency required. The annual consumption in kWh of the current and proposed pumps was compared in the economic analysis. The selected oil wells were DRRD-028UI, operating with 350 Hp and 350 stages; DRRC-029UI, 188 Hp and 234 stages; and DRRA-015UI, 180 Hp and 372 stages. The results concluding that the current electric submersible pumps are oversized, therefore they incur unnecessary energy costs. The well DRRD-028UI requires 68 Hp and 247 stages, DRRC-029UI, 60 Hp y 312 stages; and for the well DRRA-015UI 85 Hp and 236 stages. The approach concludes the change of the ESP pumps would generate a saving of 307821 dollars in this way it was concluded that with a pump change a saving in energy consumption of 25% could be obtained in the DRRD-028UI oil well, 32% of the DRRC-029UI oil well and 38% in the DRRA-015UI oil well.

KEYWORDS

PIPESIM, NODAL ANALYSIS, OPTIMIZATION SECONDARY RECOVERY

Se autoriza la publicación de este Proyecto de Titulación en el Repositorio Digital de la Institución.

AGUIRRE GOYES BRYAN PATRICIO

171678631-2

DECLARACIÓN Y AUTORIZACIÓN

Yo, AGUIRRE GOYES BRYAN PATRICIO, CI 171678631-2 autor del proyecto titulado: ANÁLISIS TÉCNICO ECONÓMICO DE LA OPTIMIZACIÓN DE LEVANTAMIENTO ARTIFICIAL EN POZOS PETROLEROS POR MEDIO DE SOFTWARE PIPESIM EN EL ORIENTE ECUATORIANO. Previo a la obtención del título de INGENIERO DE PETRÓLEOS en la Universidad UTE.

- 1. Declaro tener pleno conocimiento de la obligación que tienen las Instituciones de Educación Superior, de conformidad con el Artículo 144 de la Ley Orgánica de Educación Superior, de entregar a la SENESCYT en formato digital una copia del referido trabajo de graduación para que sea integrado al Sistema Nacional de información de la Educación Superior del Ecuador para su difusión pública respetando los derechos de autor.
- Autorizo a la BIBLIOTECA de la Universidad UTE a tener una copia del referido trabajo de graduación con el propósito de generar un Repositorio que democratice la información, respetando las políticas de propiedad intelectual vigentes.

Quito, 09 de octubre de 2018

AGUIRRE GOYES BRYAN PATRICIO

171678631-2

DECLARACIÓN

Yo, **AGUIRRE GOYES BRYAN PATRICIO** declaro que el trabajo aquí descrito es de mi autoría; que no ha sido previamente presentado para ningún grado o calificación profesional; y, que he consultado las referencias bibliográficas que se incluyen en este documento.

La Universidad UTE puede hacer uso de los derechos correspondientes a este trabajo, según lo establecido por la Ley de Propiedad Intelectual, por su Reglamento y por la normativa institucional vigente.

AGUIRRE GOYES BRYAN PATRICIO

171678631-2

CERTIFICACIÓN

Certifico que el presente trabajo que lleva por título "ANÁLISIS TÉCNICO ECONÓMICO DE LA OPTIMIZACIÓN DE LEVANTAMIENTO ARTIFICIAL EN POZOS PETROLEROS POR MEDIO DE SOFTWARE PIPESIM EN EL ORIENTE ECUATORIANO", que, para aspirar al título de Ingeniero de Petróleos fue desarrollado por BRYAN PATRICIO AGUIRRE GOYES, bajo mi dirección y supervisión, en la Facultad de Ciencias de la Ingeniería e Industrias; y cumple con las condiciones requeridas por el reglamento de Trabajos de Titulación artículos 19, 27 y 28.

ING. LUIS ALBERTO CALLE GUADALUPE

C.I.: 170513410-2

ÍNDICE DE CONTENIDOS

P	agına
RESUMEN	1
ABSTRACT	2
1. INTRODUCCIÓN	3
1.1. OBJETIVOS	8
1.1.1. OBJETIVO GENERAL	8
1.1.2. OBJETIVOS ESPECÍFICOS	8
2. METODOLOGÍA	9
2.1. CARACTERIZACIÓN DE LOS POZOS CANDIDATOS	9
2.2. REDIMENSIONAMIENTO DE LA BOMBA	
ELECTROSUMERGIBLE	
2.3. ANÁLISIS ECONÓMICO COMPARATIVO	12
3. RESULTADOS Y DISCUSIÓN	14
3.1. INFORMACIÓN GENERAL "CAMPO DRAGO NORTE"	14
3.2. CARACTERIZACIÓN DE LOS POZOS CANDIDATOS DEL	
CAMPO DRAGO NORTE	15
3.3. REDIMENSIONAMIENTO DE LA BOMBA	
ELECTROSUMERGIBLE	17
3.4. ANÁLISIS ECONÓMICO COMPARATIVO	31
4. CONCLUSIONES Y RECOMENDACIONES	40
4.1. CONCLUSIONES	40
4.2. RECOMENDACIONES	40
5. BIBLIOGRAFÍA	41
6 ANEXOS	43

ÍNDICE DE TABLAS

	Р	agına
Tabla 1.	Ubicación geográfica del Campo Drago Norte	14
Tabla 2.	Producción de petróleo - Activo Shushufindi	16
Tabla 3.	Producción de petróleo – Pozos candidatos	18
Tabla 4.	Condiciones de operación de BES - Pozos candidatos	18
Tabla 5.	Caudal Máximo	18
Tabla 6.	IPR de pozo DRRC-029UI	20
Tabla 7.	IPR de pozo DRRD-028UI	21
Tabla 8.	IPR de pozo DRRA-015UI	22
Tabla 9.	Historial de Producción Pozo DRRC-029UI	22
Tabla 10.	Historial de Producción Pozo DRRD-028UI	24
Tabla 11.	Historial de Producción Pozo DRRA-015UI	25
Tabla 12.	Cálculos TDH	27
Tabla 13.	Configuración de los pozos	27
Tabla 14.	Potencia de la bomba y número de etapas	30
Tabla 15.	Número de etapas	31
Tabla 16.	Potencia requerida	31
Tabla 17.	Costos de bomba BES	31
Tabla 18.	Requerimiento de energía	31
Tabla 19.	Costo de consumo de energía	32
Tabla 20.	Costos estimados de Pulling de la Bomba actual del	
	Pozo DRRA-015UI	33
Tabla 21.	Costos estimados de Pulling de la Bomba actual del	
	Pozo DRRC-029UI	34
Tabla 22.	Costos estimados de Pulling de la Bomba actual del	
	Pozo DRRD-028UI	35
Tabla 23.	Costos estimados de Pulling de la bomba propuesta – Pozo	
	DRRA-015UI	36
Tabla 24.	Costos estimados de Pulling de la bomba propuesta – Pozo	
	DRRC-029UI	37
Tabla 25.	Costos estimados de Pulling de la bomba propuesta – Pozo	
	DRRD-028UI	
Tabla 26.	Resumen comparativo de costos actuales y propuestos	39

ÍNDICE DE FIGURAS

		Página
Figura 1	. Componentes básicos de un Sistema por BES	4
Figura 2	. Procedimiento de uso de PIPESIM	6
Figura 3	. Mapa de Bloque 57 – Campo Drago	14
Figura 4	. Mapa Estructural Campo Drago Norte	15
Figura 5	. Historial de producción del Campo Drago Norte	15
Figura 6	. Gráfica IPR del pozo DRRC-029UI	19
Figura 7	. Gráfica IPR del pozo DRRD-028UI	19
	. Gráfica IPR del pozo DRRA-015UI	
Figura 9	. Historial de Producción Pozo DRRC-029UI	23
Figura 1	0. BSW DRRC-029UI	23
Figura 1	1. Historial de Producción Pozo DRRD-028UI	24
Figura 1	2. BSW DRRC-028UI	25
Figura 1	3. Historial de Producción Pozo DRRA-015UI	26
Figura 1	4. BSW DRRA-015UI	26
Figura 1	5. Diagrama de redimensionamiento del Pozo DRRC-029UI	28
Figura 1	6. Diagrama de redimensionamiento del Pozo DRRD-028UI	29
Figura 1	7. Diagrama de redimensionamiento del Pozo DRRA-015UI	30

ÍNDICE DE ANEXOS

	Página
ANEXO 1. CÁLCULO DE ÍNDICE DE PRODUCTIVIDAD	43
ANEXO 2. CÁLCULO DE LA ALTURA TOTAL DINÁMICA	45
ANEXO 3. CÁLCULO DE NÚMERO DE ETAPAS	51
ANEXO 4. DIAGRAMA DE POZOS	53

RESUMEN

El análisis técnico económico para la optimización del sistema de levantamiento artificial por bombeo electrosumergible se realizó en tres pozos del campo Drago Norte del oriente ecuatoriano. Para caracterizar los pozos que operaban en Donwtrust fue preciso considerar los siguientes criterios: sistema de levantamiento a través de bombeo electrosumergible, pozos fracturados en el periodo marzo 2017 a marzo 2018, alta producción de fluido con una base de 500 barriles de petróleo por día (BPPD), producción de crudo mayor a la producción de agua y no más de un cambio de bomba electrosumergible en los pozos fracturados en el periodo de estudio. Para el redimensionamiento se calculó las especificaciones de una bomba con datos actuales entregados por la ARCH; el cálculo de la gráfica de desempeño utilizó software Pipesim, los datos necesarios para complementar redimensionamiento de la bomba fueron, caudal máximo, índice productividad y cabeza total dinámica. Con base en los resultados obtenidos se computó el número total de etapas y la potencia total requerida de la bomba. El análisis económico comparó los costos del consumo de energía eléctrica en kilovatios hora (kWh) de las bombas electrosumergibles que trabajan actualmente con los de las bombas propuestas, en el transcurso de un año. Los pozos seleccionados fueron: DRRD-028UI, operando con una potencia de 350 Hp y 350 etapas; DRRC-029UI, 188 Hp y 234 etapas; y DRRA-015UI, 180 Hp y 372 etapas. Como resultado se estableció que las bombas electrosumergibles de los pozos seleccionados requieren una bomba de menor capacidad, siendo para el pozo DRRD-028UI, 68 Hp y 247 etapas; para el pozo DRRC-029UI, 60 Hp y 312 etapas; y para el pozo DRRA-015UI 85 Hp y 236 etapas. La propuesta concluye que el cambio de bombas electrosumergibles generaría un ahorro de 307821 dólares al obtener una disminución en el consumo energético del 25% en el pozo DRRD-028UI, 32% del pozo DRRC-029UI y del 38% en el pozo DRRA-015UI.

PALABRAS CLAVE: PIPESIM, OPTIMIZACIÓN, ANÁLISIS NODAL, BOMBEO ELECTROSUMERGIBLE BES

ABSTRACT

The economic and technical analysis was carried out to optimize the artificial lift system by electro-submersible pumping in three "Drago Norte" oil wells of the Ecuadorian amazon region. The characterize of the oil wells that behave in Donwtrust consider the following judgment: Artificial lift system by ESP, oil wells that were fractured in march 2017 to march 2018, high production of fluid with a base of 500 barrels a day, high production of oil and low rate of water, no more than one change of pump in the estimated period. For the resizing were computed the pump specifications with updated data provided by the ARCH, the estimate of the performance graphics used the Pipesim software, the additional data required to supplement the resizing of the pumps were maximum flow rate, the productivity index and the IPR graphs. The information obtained served to determine the total feet of fluid that would lift the pump and total potency required. The annual consumption in kWh of the current and proposed pumps was compared in the economic analysis. The selected oil wells were DRRD-028UI, operating with 350 Hp and 350 stages; DRRC-029UI, 188 Hp and 234 stages; and DRRA-015UI, 180 Hp and 372 stages. The results concluding that the current electric submersible pumps are oversized, therefore they incur unnecessary energy costs. The well DRRD-028UI requires 68 Hp and 247 stages, DRRC-029UI, 60 Hp y 312 stages; and for the well DRRA-015UI 85 Hp and 236 stages. The approach concludes the change of the ESP pumps would generate a saving of 307821 dollars in this way it was concluded that with a pump change a saving in energy consumption of 25% could be obtained in the DRRD-028UI oil well, 32% of the DRRC-029UI oil well and 38% in the DRRA-015UI oil well.

KEYWORDS: PIPESIM, OPTIMIZATION, NODAL ANALYSIS, ELECTRICAL SUBMERSIBLE PUMPING ESP

	1. INTRODUCCIÓN

1. INTRODUCCIÓN

La extracción prolongada de hidrocarburos cambia las condiciones del reservorio en los pozos petroleros ocasionando un mayor requerimiento de energía en forma de presión en la cara de la arena productora; esto disminuye la capacidad del sistema de producción y es necesario implementar una fuente de energía externa, para lo cual se evalúa las condiciones petrofísicas del pozo, a fin de establecer qué método de levantamiento artificial es óptimo y rentable para ser utilizado. (Schlumberger, 2015).

En el campo Drago Norte, la mayoría de sus pozos se encuentran empleando el sistema de bombeo electrosumergible (BES); el cual utiliza una bomba centrífuga que mediante un motor eléctrico transforma energía eléctrica en energía mecánica a modo de presión y de esta manera expulsa los fluidos hacia la superficie. (Petroamazonas EP, 2012).

El sistema (BES) es el más utilizado en la actualidad, ofrece grandes ventajas en cuanto a la relación costo—beneficio, especialmente para yacimientos cualificados como potencialmente rentables en producción de volúmenes considerables de crudo liviano y mediano, a diferentes profundidades y bajo una amplia variedad de condiciones petrofísicas de los pozos. (Zambrano, 2011).

El (BES) está compuesto por equipos de fondo y de superficie. Entre todos, el principal componente es una bomba centrífuga que a manera de presión levanta el fluido desde el reservorio hasta la superficie empleando la energía mecánica suministrada por un motor eléctrico ubicado en el fondo del pozo (Ramírez, 2004).

Los principales componentes de superficie son: el banco de transformación, que provee del voltaje necesario para la operación del equipo; el tablero de control que protege y controla las operaciones del pozo; el variador de frecuencia, el controlador de motor para operar el sistema BES; y la caja de venteo, ubicada entre el cabezal del pozo y el tablero de control, que permite la conexión del cable de energía del equipo de superficie con el cable del motor, y sirve como vía de evacuación del gas que fluye a través del cable para evitar una explosión; finalmente, el cabezal de descarga, un equipo superficial hecho para soportar el peso total del equipo de fondo (Escalante, 2015).

El equipo de subsuelo está compuesto por un motor eléctrico que transforma la energía para generar movimiento a la bomba y está compuesto por el estator y el rotor, así como por una bomba centrífuga, constituida por múltiples

etapas, cada una compuesta por un impulsor rotatorio que genera la fuerza centrífuga para incrementar la velocidad del fluido y, por un difusor estacionario que transforma parte de la energía en energía potencial o presión para direccionar el fluido al siguiente impulsor; un protector ubicado entre el motor y la bomba, es de vital importancia en el ensamblaje del sistema, conecta el eje de la bomba con el eje del motor y mediante la expansión o compresión del fluido lubricante absorbe la presión ejercida sobre el sistema; y por último, por un cable de potencia que suministra el poder al motor y a su vez transmite hasta la superficie las señales presión y temperatura registradas por el sensor que se encuentra ubicado en el fondo. (Escalante, 2015).

Los equipos de superficie y de subsuelo se aprecian en la Figura 1:

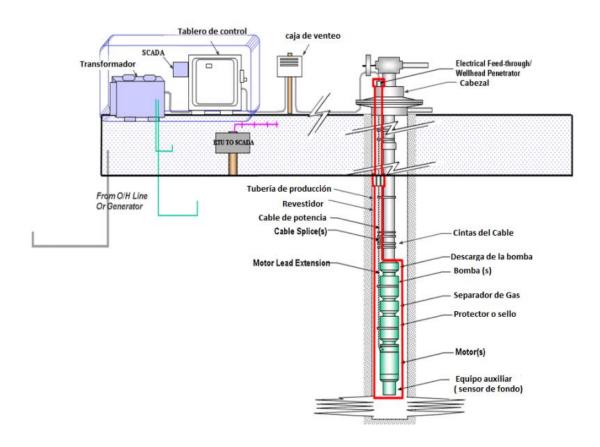


Figura 1. Componentes básicos de un Sistema por BES

Los pozos productores del campo Drago Norte que operan con bombeo electrosumergible sufren una baja de producción debido a la disminución de la presión en el yacimiento incidiendo en su dimensionamiento; lo cual repercute en la eficiencia de su operación. (Agencia de Regulación y Control Hidrocarburífero, 2017)

El presente trabajo de titulación determinó si el dimensionamiento de la bomba electrosumergible de los pozos seleccionados del Campo Drago Norte es el

adecuado, dado que un sobredimensionamiento o bajo dimensionamiento de la bomba incurre en mayores gastos energéticos; lo cual, se traduce en costos operativos innecesarios que afectan a la rentabilidad del sistema de producción.

Para el cumplimiento del objetivo es indispensable conocer las condiciones actuales de los pozos, los fluidos producidos y las características de la bomba electrosumergible; con el fin de realizar un análisis nodal que identifique las pérdidas de presión para todos los nodos a los largo del sistema y establecer un panorama real de la situación. (Camargo, Aguilar, & Addison y Rivas, 2009).

En el proceso de optimización de un sistema de producción una de las técnicas más utilizadas es el análisis nodal, con el cual se puede predecir el comportamiento actual y futuro de un pozo productor, detectar las obstrucciones al paso del flujo y así cuantificar el impacto sobre la capacidad de producción. (Hirschfeldt, 2009).

La técnica del análisis nodal constituye una herramienta de monitoreo que permite pronosticar el comportamiento de los diferentes componentes de un sistema de producción, con el objetivo de determinar acciones que permitan incrementar la eficiencia en la producción de crudo; éste proceso contempla un análisis desde el reservorio hasta el punto de separación de los fluidos. (Beggs, 2003).

El proceso de optimización aplicando análisis nodal inicia con el análisis de sensibilidad de las variables más importantes para determinar el impacto que tienen sobre la producción. (Maggiolo, 2008).

Uno de los aspectos que se considera para la optimización de un sistema de producción es: el índice de productividad, ya que brinda una idea de cuánta producción puede entregar un pozo. El índice de productividad es la relación entre la tasa de producción, el caudal y caída de presión del yacimiento. (Hirschfelt & Ruiz, Conceptos well performance, 2008).

La altura dinámica total (TDH) constituye la resistencia a vencer para que el fluido llegue hasta un punto específico. La TDH es el resultado de la sumatoria de la altura vertical neta, las pérdidas por fricción y la presión de cabeza; dato necesario en el análisis nodal. (Atoyebi, Akinnuli, & Ajobo, 2015).

Mediante el uso del Software Pipesim se plantea un escenario modelo con parámetros ideales que sirve para comparar las diferentes correlaciones estándar de flujo multifásico, los cálculos de regímenes de flujo y las pérdidas de presión, con los resultados obtenidos previamente del análisis nodal; y así

se constata, si la bomba electrosumergible se encuentra trabajando dentro del rango establecido o, si es necesario efectuar un redimensionamiento para su óptima operación.

El procedimiento de operación estandarizado (Figura 2) según el manual de PIPESIM Simulator para pozos simples y para una red de pozos se ejecuta de acuerdo con el siguiente diagrama de flujo.

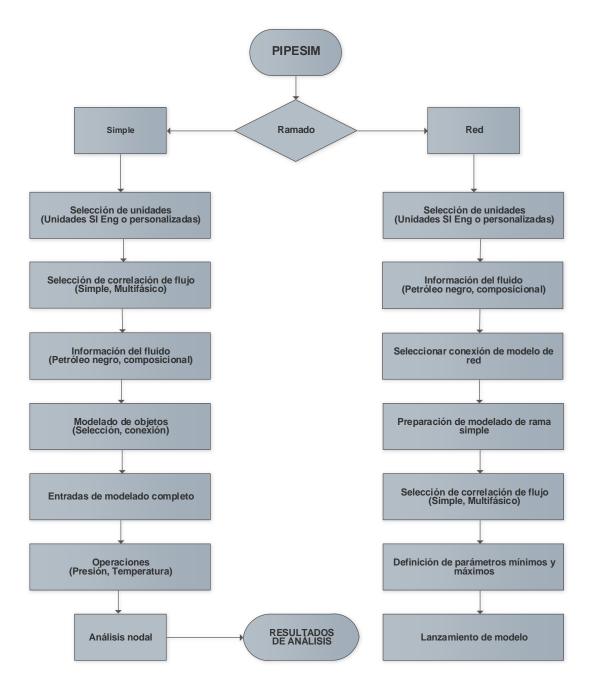


Figura 2. Procedimiento de uso de PIPESIM

El Software Pipesim es un simulador de flujo multifásico de estado estacionario utilizado para el diseño y análisis de sistemas de producción de petróleo y gas mediante algoritmos de simulación y modelado para

operaciones de producción e inyección, fue desarrollado en 1985 por la empresa Baker Jardine, que fue adquirida en abril de 2001 por Schlumberger. (Schlumberger, 2007).

Pipesim ofrece una variedad de aplicativos como modelamiento de desempeño de pozos, análisis nodal, diseño de sistemas de levantamiento artificial, modelado de redes en instalaciones de tubería y optimización de producción, diseño de pozos nuevos y análisis de pozos verticales, horizontales y multilaterales, diseño de tablas VFP para modelos de sistemas de simulación de yacimientos ECLIPSE, optimización de sistemas de levantamiento artificial por gas, entre otros. (Schlumberger: Pipesim, 2017).

Después de realizar el análisis y determinar la posibilidad de optimizar un sistema de producción es necesario evaluar las labores y los costos asociados a la implementación de las mejoras, este proceso se denomina workover o reacondicionamiento de pozos petroleros. Cabe destacar que el proceso de reacondicionamiento necesita ser valorado previo a su ejecución puesto que de una u otra manera tendrá consecuencias en la rentabilidad económica. (Da Silva, 2009).

1.1. OBJETIVOS

1.1.1. OBJETIVO GENERAL

Realizar un análisis técnico económico para la optimización del sistema de levantamiento artificial por bombeo electrosumergible en tres pozos del campo Drago Norte mediante el uso del software "PIPESIM" para determinar si el dimensionamiento de la bomba ubicada en subsuelo es el adecuado.

1.1.2. OBJETIVOS ESPECÍFICOS

- Analizar las características de los pozos candidatos para la optimización del sistema de levantamiento electrosumergible, para lo cual se considera pozos que se encuentren operando en downtrust severos.
- Obtener los datos requeridos de los pozos en estudio para la realización de la simulación en el software Pipesim y así, determinar el dimensionamiento correcto que se ajuste a las características actuales de los pozos.
- Realizar un análisis económico comparativo entre la completación previa a la ejecución de este proyecto y la propuesta para determinar la viabilidad de la implementación de los cambios.

	2. METODOLOGÍA

2. METODOLOGÍA

La Información sobre el campo Drago Norte fue proporcionada por la Agencia de Regulación y Control Hidrocarburífero (ARCH) bajo criterios de confidencialidad establecidos por la empresa y que tienen que ver con el acceso a información parcial del Plan de Desarrollo del Campo Drago Norte del 2012 y, demás datos y herramientas necesarios, durante el periodo marzo 2017 a marzo 2018.

2.1. CARACTERIZACIÓN DE LOS POZOS CANDIDATOS

Para caracterizar los pozos que se encuentran operando en Donwtrust se consideró los siguientes criterios: 1. Que el sistema de levantamiento sea a través de bombeo electrosumergible (Schlumberger information solutions, 2010), 2. Que los pozos se encuentren fracturados en el periodo marzo 2017 a marzo 2018, 3. Que sean pozos con alta producción de fluido con una base de 500 barriles de petróleo por día (BPPD) (McCoy, 2016), 4. Que la producción de crudo sea mayor a la producción de agua (Bailey, 2010), 5. Que no haya existido más de un cambio de bomba electrosumergible en los pozos fracturados en el periodo de estudio (Nind, 2010).

2.2. REDIMENSIONAMIENTO DE LA BOMBA ELECTROSUMERGIBLE

Para el redimensionamiento se calculó las especificaciones de una bomba con datos actuales entregados por la ARCH; el software Pipesim se utilizó para el cálculo de la gráfica de desempeño de la bomba, que muestra los pies de fluido por etapa y la potencia por etapa de la bomba.

Los datos requeridos por el software Pipesim son, de fluido: cantidad de agua y petróleo producidos, gravedad API, contenido de agua y sedimentos (BSW), relación gas-petróleo (GOR); de presión: fondo fluyente (Pwf), reservorio (Pr), Intake (PIP) y presión de cabeza; de profundidades de asentamiento: sensor de fondo, casing conductor, casing superficial, camisa de circulación, no-go y tubing intermedio productor. Adicionalmente, información del diámetro interno de tubería y profundidad de la formación.

Los datos necesarios para complementar el redimensionamiento de la bomba son: caudal máximo (ecuación 1) (Abel, 2014), índice de productividad (ecuación 2) (Hirschfelt & Ruiz, Conceptos well performance, 2008) y cabeza total dinámica (ecuación 3) (Atoyebi, Akinnuli, & Ajobo, 2015)

Caudal Máximo

$$Qmax = \frac{Pr}{1 - 0.2 \times \frac{Pwf}{Pr} - 0.8 \times \frac{Pwf^{2}}{Pr}}$$
[1]

Dónde:

Pr: Presión de reservorio (psi)Pwf: Presión de fondo fluyente (psi)Qmax: Caudal máximo (bls/días)

$$J = \frac{Q}{Qmax}$$
 [2]

Dónde:

J: Índice de productividad (Bppd/día)

Q: Caudal (Bppd/día)

Qmax: Caudal máximo (Bppd/día)

Altura Total Dinámica (TDH)

$$TDH = Nvl + Pf + Pc_a$$
 [3]

Dónde:

Nvl: Nivel dinámico de fluido (pies)
Pf: Pérdidas por fricción (pies)

Pca: Presión de cabeza en altura (pies)

TDH: Cabeza total dinámica (pies)

Para efectuar el cálculo de (TDH) se requirieron valores de: nivel dinámico de fluido (ecuación 4), pérdidas por fricción (ecuación 5), presión de cabeza en altura (ecuación 6) y presión de intake en altura (ecuación 7).

Nivel dinámico de fluido

$$Nvl = Prof_f - Pi_a [4]$$

Dónde:

Nvl: Nivel dinámico de fluido (pies)

Proff: Profundidad de la formación (pies)

Pia: Presión de Intake en Altura (pies)

Pérdidas por fricción

$$Pf = \frac{2.083 \times \left(\frac{100}{c}\right)^{1.852} \left(\frac{Q}{34.3}\right)^{1.852}}{ID^{4.65}}$$
 [5]

Dónde:

Pf: Pérdidas por fricción (pies)

Q: Caudal (bls/día)

C: 120

ID: Diámetro de tubería (pulgadas)PS: Profundidad del sensor (pies)

Presión de cabeza en altura

$$Pca = Pc \times \frac{2.31}{\rho r_m}$$
 [6]

Dónde:

Pca: Presión de cabeza en altura (pies)

Pc: Presión de cabeza (psi)

prm: Densidad relativa de la mezcla

Presión Intake en altura

$$Pi_a = 2.33 \times \frac{Pwf}{\rho r_m}$$
 [7]

Dónde:

Pia: Presión de Intake en Altura (pies)Pwf: Presión de fondo fluyente (psi)prm: Densidad relativa de la mezcla

Con base en los resultados obtenidos de la gráfica de dimensionamiento de la bomba electrosumergible y cabeza total dinámica se calculó el número total de etapas (ecuación 8) y la potencia total requerida de la bomba (ecuación 9) (Hirchfelt, 2010), por seguridad se agrega un 20% de potencia adicional a la bomba (Takacs, 2011)

Número de etapas

$$E = \frac{TDH}{Ppe}$$
 [8]

Dónde:

TDH: Cabeza Total Dinámica (pies)

Ppe: Pies por etapa (pies)

Potencia total requerida de la bomba

$$Pr_* = (e \times p) \tag{9}$$

Dónde:

e: Etapas

p: Potencia requerida por etapa (HP)

Pr *: Potencia total requerida de la bomba (HP)

2.3. ANÁLISIS ECONÓMICO COMPARATIVO

El análisis económico comparó los costos del consumo de energía eléctrica en kilovatios hora (kWh) (ecuación 10) de las bombas electrosumergibles que se encuentran actualmente operando y de las bombas propuestas, en el transcurso de un año (Ministerio de energía y recursos naturales no renovables, 2017).

Costo de consumo de la bomba

$$Cc = 0.00933 \times Pr_*$$
 [10]

Dónde:

Cc: Costo de consumo de energía eléctrica de la bomba

(kWh)

*Pr *:* Potencia requerida por etapa (HP)

Para la determinación de la viabilidad del proyecto se comparó los costos de la completación propuesta y de los costos de mantenimiento de la completación actual (Agencia de Regulación y Control Hidrocarburifera, 2017) en los pozos. Una comparación de los mismos podría determinar que luego de implementar la bomba propuesta se produciría un ahorro (Lopez, 2010).

Los costos que se consideró para la implementación de la bomba propuesta son: costos de las herramientas de limpieza, equipos y servicios de completación, fluido de control, cable de potencia e inspección y cambio de cable de potencia y tubulares (Agencia de Regulación y Control Hidrocarburífero, 2017).

3. RESULTADOS Y DISCUSIÓN

3.1. INFORMACIÓN GENERAL "CAMPO DRAGO NORTE"

El Campo Drago se encuentra situado en la Provincia de Sucumbíos en el Oriente Ecuatoriano a 193 km al este de la ciudad de Quito; la (Tabla 1) muestra las coordenadas geográficas del campo. Actualmente, el Complejo Drago está constituido de las estructuras Drago, Drago Norte y Drago Este; pertenece al Bloque 57 Activo Shushufindi (Figura 3), operado por Petroamazonas EP (Petroamazonas EP, 2012).

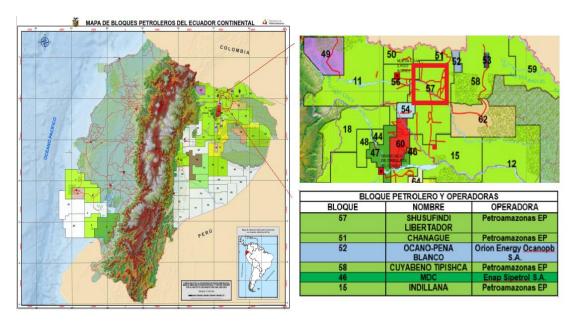


Figura 3. Mapa de Bloque 57 - Campo Drago

Tabla 1. Ubicación geográfica del Campo Drago Norte

COORDENADAS DEL CAMPO DRAGO NORTE				
Geográficas				
1	0° 10′ 49.475″ S	76° 43′ 20.586″ W		
2	0° 8′ 27.209″ S	76° 43′ 20.574″ W		
3	0° 10 '49.464" S	76° 45′ 20.165″ W		
4	0° 8′ 27.2″ S	76° 45′ 20.153″ W		

La Caliza A y B constituye una estructura de bajo relieve (Figura 4) con dirección preferencial Norte-Sur; ésta se encuentra diferenciada del campo Shushufindi por un anticlinal asimétrico y una deflexión estructural. (Agencia de Regulación y Control Hidrocarburifera, 2017)

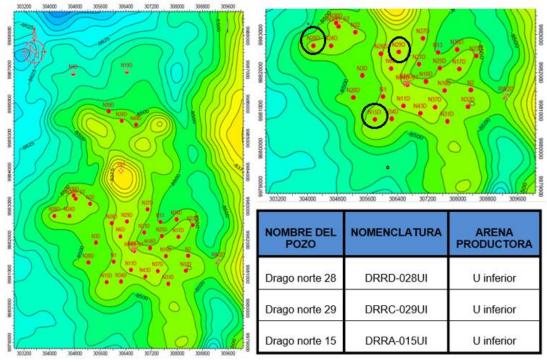


Figura 4. Mapa Estructural Campo Drago Norte

3.2. CARACTERIZACIÓN DE LOS POZOS CANDIDATOS DEL CAMPO DRAGO NORTE

El campo Drago Norte inició su explotación en septiembre de 2007, con una producción de 8900 (STB/día) de petróleo, sin producción de agua; para mayo de 2014, tal como se observa en la Figura 5 la producción alcanza un pico de 13900 (STB/día) de petróleo con un corte de agua del 37% y, ascendiendo.

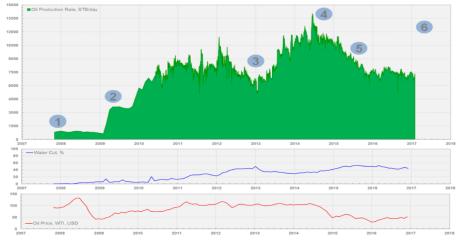


Figura 5. Historial de producción del Campo Drago Norte

La Tabla 2 detalla la producción de petróleo por pozo (BPPD), barriles de agua por día (BAPD), los barriles de fluido por día (BFPD) y pozos fracturados en el periodo marzo 2017 a marzo 2018 de los pozos productores del campo Drago Norte.

Tabla 2. Producción de petróleo - Activo Shushufindi

Tabla 2. Producción de petróleo - Activo Shushufindi BFPD BPPD BAPD POZOS				
POZO	(BLS/DÍA)	(BLS/DÍA)		FRACTURADOS
DRRA-001HS	1302	325.50	976.50	
DRRA-001UI	166	124.50	41.50	
DRRA-003UI	116	58	58	
DRRA-006UI	517	506.66	10.34	Х
DRRA-011UI	314	219.80	94.20	
DRRA-014S1UI	324	304.50	19.51	
DRRA-015UI	1713.89	1696.75	17.14	X
DRRA-035S1UI	1318	514.02	803.98	
DRRA-042UI	254	198.12	55.88	
DRRA-043UI	72	70.56	1.44	
DRRA-048UI	890	872.20	17.80	
DRRB-016UI	590	153.40	436.60	
DRRB-017UI	710	284	426	
DRRB-018M2	93	51.15	41.85	
DRRB-031UI	720	676.80	43.20	
DRRB-037UI	1310	1113.50	196.50	X
DRRC-021UI	301	291.97	9.03	
DRRC-027UI	556.45	480.53	75.92	
DRRC-029UI	587.20	458.23	128.97	X
DRRC-049UI	604.23	543.35	60.88	X
DRRD-022UI	1080	993.60	86.40	
DRRD-024TS	246	243.54	2.46	
DRRD-024UI	1368	1299.60	68.40	
DRRD-026TS	95	91.20	3.80	
DRRD-026UI	1176	1140.72	35.28	
DRRD-028UI	966	653.08	312.92	X
DRRD-030S1UI	150	89.88	60.12	
DRRD-051UI	145	39.15	105.85	
DRRD-053TI	742	22.26	719.74	
DRRD-055S1UI	1270	1193.80	76.20	X
DRRD-056TI	160	150.40	9.60	
DRRD-059UI	140	42	98	
DRRE-004BT	102	100.98	1.02	
DRRE-007TI	1424	427.20	996.80	X
DRRE-038TI	560	156	1404	X

Los siguientes pozos no se consideran candidatos ya que no han sido fracturados en el periodo indicado: DRRA-011UI, DRRA-014S1UI, DRRA-042UI, DRRA-043UI, DRRA-048UI, DRRB-016UI, DRRB-018M2, DRRB-031UI, DRRD-022UI, DRRD-024TS, DRRD-051UI, DRRD-053TI, DRRD-056TI, DRRD-059UI y DRRE-004BT.

Los pozos que se encuentran cerrados debido a su baja producción son: DRRA-001UI, DRRA-003UI y DRRD-026TS.

Los pozos DRRA-001HS, DRRB-017UI, DRRB-024UI y DRRD-026UI cambiaron de arena productora en el periodo febrero - marzo 2018.

Los pozos que fueron fracturados en el periodo marzo 2017 a marzo 2018 son los pozos: DRRA-035S1UI, DRRB-037UI, DRRC-049UI, DRRD-055S1UI, DRRE-007TI, DRRE-038TI; de estos, el pozo DRRA-035SIUI produce un promedio de 803 bls/día de agua en relación a su producción de 1318 bls/día de fluido, lo mismo ocurre con los pozos DRRE-007TI y DRRE-038 TI con una producción de crudo de 427 bls/día y 156 bls/día.

Los pozos cuya bomba ha sido cambiada más de una vez en el periodo de análisis son: DRRC-049Ulcon un cambio de bomba de una TD-675 y de una JET-101 a una bomba TD-2700. Lo mismo ocurre en el pozo DRRD-055S1Ul, la bomba NP (3100-4400) H fue cambiada a una D-2400N.

Los pozos DDRA-015UI, DRRC-029UI y DRR-028UI se consideraron como pozos aptos para el redimensionamiento de las bombas electrosumergibles debido a que ha sido fracturado en el periodo indicado, su producción de crudo es mayor a producción de agua y su producción de fluido es mayor a los 500 bls/día, además las bombas electrosumergibles de estos pozos no fueron cambiadas en el transcurso del análisis.

3.3. REDIMENSIONAMIENTO DE LA BOMBA ELECTROSUMERGIBLE

Los datos requeridos en el software Pipesim de los pozos referentes a producción de crudo (BPPD), agua (BAPD), corte de agua y sedimentos (BSW), relación gas-petróleo (GOR), gravedad API, presiones de cabeza, presión de entrada a la bomba (PIP), se detallan en la Tabla 3.

Tabla 3. Producción de petróleo - Pozos candidatos

POZO	DRRC-029UI	DRRD-028UI	DRRA-015UI
BFPD (BLS/DÍA)	587.20	966	1713.89
BPPD (BLS/DÍA)	458.23	653.08	1696.75
BAPD (BLS/DÍA)	128.97	312.92	17.14
BSW	3	48	1
GOR	0	0	184
API 27.1		27	26.2
PRESIÓN (PSI)	60	100	45
PIP (PSI) 519		518	496
SALINIDAD (PPM) 0		78.80	0

Los datos de las bombas que operan en los pozos seleccionados necesarios para la comparación de consumo de energía eléctrica están configurados como se muestra a continuación en la Tabla 4.

Tabla 4. Condiciones de operación de BES - Pozos candidatos

CARACTERÍSTICAS DE LA BOMBA		DRRC 029	DRRD 028	DRRA 015
Modelo/Tipo		D-1750N	DN-1750	TE-2700 AR MDLR
Serie		400	538	538
Configuración		Compresora	Compresora	AR HSS MNL SST H&B
Número de etapas	Etapas	234	372	270
Tipo de motor		MAXIMUS 460 MAXIMUS 180 HP 502-504 HP		MOTOR E56
Velocidad de operación	RPM	3307	3321	2299
Amperaje	Α	31.2 74.1		62.3
Frecuencia	Hz	55	55.10	50
Voltaje	V	2202	3712	2115
Carga total de operación	%	87.59	76.74	86
Eficiencia	%	85.34	83	85

Los cálculos correspondientes a los caudales máximos e índice de productividad de cada uno de los pozos candidatos, se muestran en el anexo 1, para lo cual se considera que son pozos saturados y se emplea las ecuaciones de Vogel.

A continuación, en la Tabla 5 se detalla los resultados obtenidos de caudal máximo e índice de productividad de los pozos seleccionados.

Tabla 5. Caudal Máximo

POZO	CAUDAL (BLS/DÍA)	CAUDAL MÁXIMO (BLS/DIA)	ÍNDICE DE PRODUCTIVIDAD
DRRA-015 UI	1434	1638.56	0.87516
DRRD-028 UI	277	313.86	0.88257
DRRC-029 UI	885	995.57	0.88894

Las gráficas de IPR que se muestran en las Figuras 6, 7 y 8 son el resultado del cálculo del caudal máximo desde la presión de reservorio hasta su abatimiento. En las Tablas 6, 7 y 8 se detallan las presiones y los caudales de agua (Qw) y de petróleo (Qo) de los pozos candidatos. Las tablas se dividen en dos casos, en el primer caso se utiliza la ecuación 1 calculada en el Anexo 1 y va desde la etapa temprana hasta la presión a punto de burbuja, en el segundo caso se emplea la ecuación 2 calculada en el Anexo 1 y va desde la presión a punto de burbuja hasta llegar a 0 Psi; de ésta forma se emplea ecuaciones de petróleo saturado.

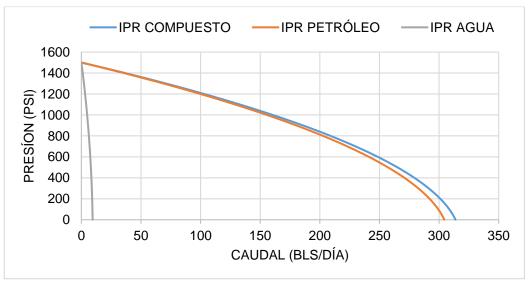


Figura 6. Gráfica IPR del pozo DRRC-029UI

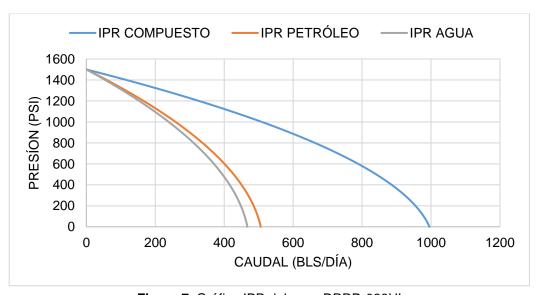


Figura 7. Gráfica IPR del pozo DRRD-028UI

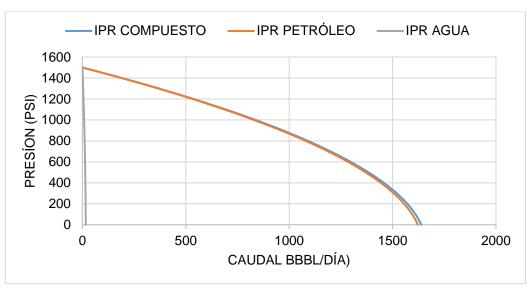


Figura 8. Gráfica IPR del pozo DRRA-015UI

Tabla 6. IPR de pozo DRRC-029UI

NO.	PWF (PSI)	QT	QO	QW
CASO		(BLS/DÍA)	(BLS/DÍA)	(BLS/DÍA)
1	1500	0	0	0
1	1450	18.55	17.99	0.55
1	1400	36.54	35.45	1.09
1	1350	53.98	52.36	1.61
1	1300	70.86	68.73	2.12
1	1250	87.18	84.56	2.61
1	1200	102.94	99.85	3.08
1	1150	118.14	114.60	3.54
2	1100	132.79	128.81	3.98
2	1050	146.88	142.47	4.40
2	1000	160.41	155.60	4.81
2	950	173.38	168.18	5.20
2	900	185.80	180.22	5.57
2	850	197.65	191.72	5.92
2	800	208.95	202.68	6.26
2	750	219.69	213.10	6.59
2	700	229.88	222.98	6.89
2	650	239.50	232.32	7.18
2	600	248.57	241.11	7.45
2	550	257.08	249.36	7.71
2	500	265.03	257.08	7.95
2	450	272.42	264.25	8.17
2	400	279.26	270.88	8.37
2	350	285.53	276.97	8.56
2	300	291.25	282.51	8.73
2	250	296.41	287.52	8.89
2	200	301.021	291.99	9.03
2	150	305.067	295.91	9.15
2	100	308.55	299.29	9.25
2	50	311.48	302.13	9.34
2	0	313.85	304.43	9.41

Tabla 7. IPR de pozo DRRD-028UI

l abia 7. IPR de pozo DRRD-02801					
NO.	PWF (PSI)	QT	QO	QW	
CASO	FWI (FSI)	(BLS/DÍA)	(BLS/DÍA)	(BLS/DÍA)	
1	1500	0	0	0	
1	1450	58.84	29.90	27.60	
1	1400	115.92	58.92	54.38	
1	1350	171.23	87.03	80.33	
1	1300	224.77	114.24	105.45	
1	1250	276.54	140.55	129.74	
1	1200	326.54	165.96	153.19	
1	1150	374.77	190.47	175.82	
1	1100	421.23	214.092	197.62	
1	1050	465.92	236.80	218.59	
2	1000	508.84	258.62	238.72	
2	950	549.99	279.53	258.03	
2	900	589.37	299.54	276.50	
2	850	626.98	318.66	294.15	
2	800	662.82	336.88	310.96	
2	750	696.89	354.19	326.95	
2	700	729.19	370.61	342.10	
2	650	759.72	386.13	356.42	
2	600	788.48	400.74	369.92	
2	550	815.47	414.46	382.58	
2	500	840.70	427.28	394.41	
2	450	864.15	439.20	405.41	
2	400	885.83	450.22	415.59	
2	350	905.74	460.34	424.93	
2	300	923.88	469.56	433.44	
2	250	940.25	477.88	441.12	
2	200	954.85	485.30	447.97	
2	150	967.69	491.82	453.99	
2	100	978.75	497.44	459.18	
2	50	988.04	502.17	463.54	
2	0	995.56	505.99	467.07	

Tabla 8. IPR de pozo DRRA-015UI

NO.		QT	QO	QW
CASO	PWF (PSI)	(BLS/DÍA)	(BLS/DÍA)	(BLS/DÍA)
1	1500	0	0	0
1	1450	96.85	95.88	0.96
1	1400	190.80	188.89	1.90
1	1350	281.83	279.01	2.81
1	1300	369.94	366.24	3.69
1	1250	455.15	450.60	4.55
2	1200	537.44	532.07	5.37
2	1150	616.82	610.65	6.16
2	1100	693.29	686.35	6.93
2	1050	766.84	759.17	7.66
2	1000	837.48	829.10	8.37
2	950	905.20	896.15	9.05
2	900	970.02	960.32	9.70
2	850	1031.92	1021.60	10.31
2	800	1090.91	1080	10.90
2	750	1146.98	1135.51	11.46
2	700	1200.14	1188.14	12
2	650	1250.39	1237.89	12.50
2	600	1297.73	1284.75	12.97
2	550	1342.15	1328.73	13.42
2	500	1383.66	1369.83	13.83
2	450	1422.26	1408.04	14.22
2	400	1457.94	1443.36	14.57
2	350	1490.71	1475.81	14.90
2	300	1520.57	1505.37	15.20
2	250	1547.52	1532.04	15.47
2	200	1571.55	1555.83	15.71
2	150	1592.67	1576.74	15.92
2	100	1610.87	1594.77	16.10
2	50	1626.17	1609.91	16.26
2	0	1638.55	1622.16	16.38

Los historiales de producción de los pozos candidatos se muestran en las Tablas 9, 10, y 11, y en las Figuras 9, 10, 11, 12, 13 y 14 respectivamente; para la generación de las tablas se selección un día próximo al fin de mes, empezando desde el mes de marzo 2017 hasta marzo 2018.

Tabla 9. Historial de Producción Pozo DRRC-029UI

DRRC-029 UI				
FECHA	BFPD (BLS)	BPPD (BLS)	BAPD (BLS)	BSW
10/07/2017	561	476.85	84.15	15
30/08/2017	770	585.20	184.80	24
28/09/2017	345	338.10	6.90	98
28/10/2017	731	709.07	21.93	3
30/11/2017	529	513.13	15.87	3
28/12/2017	421	408.37	12.63	3
28/01/2018	439	425.83	13.17	3
27/02/2018	318	308.46	9.54	3
19/03/2018	277	268.69	8.31	3

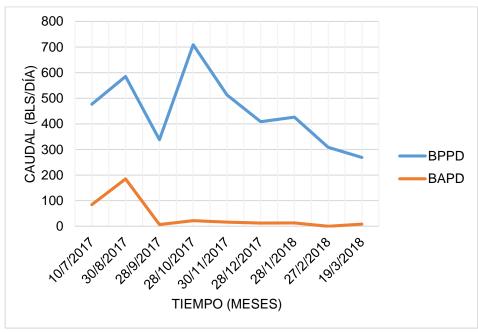


Figura 9. Historial de Producción Pozo DRRC-029UI

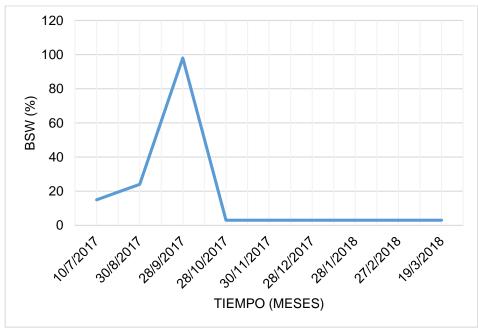


Figura 10. BSW DRRC-029UI

Tabla 10. Historial de Producción Pozo DRRD-028UI

	DRRD-028UI				
FECHA	BFPD (BLS)	BPPD (BLS)	BAPD (BLS)	BSW	
26/03/2017	339	335.61	3.39	1	
29/04/2017	303	299.97	33	1	
29/05/2017	308	304.92	38	1	
26/06/2017	455	441.17	13.83	3	
26/07/2017	1550	1534.50	15.50	1	
28/08/2017	2010	1989.90	20.10	1	
28/09/2017	1982	1962.18	19.82	1	
31/10/2017	1821	1802.79	18.21	1	
30/11/2017	1711	1693.89	17.11	1	
28/12/2017	1615	1598.85	16.15	1	
26/01/2018	1615	1598.85	16.15	1	
19/02/2018	1687	1670.13	16.87	1	

Figura 11. Historial de Producción Pozo DRRD-028UI

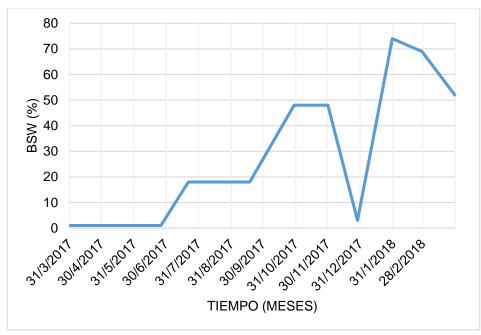


Figura 12. BSW DRRC-028UI

Tabla 11. Historial de Producción Pozo DRRA-015UI

DRRA-015UI				
FECHA	BFPD (BLS)	BPPD (BLS)	BAPD (BLS)	BSW
26/03/2017	339	335.61	3.39	1
29/04/2017	303	299.97	33	1
29/05/2017	308	304.92	38	1
26/06/2017	455	441.17	13.83	3
26/07/2017	1550	1534.50	15.50	1
28/08/2017	2010	1989.90	20.10	1
28/09/2017	1982	1962.18	19.82	1
31/10/2017	1821	1802.79	18.21	1
30/11/2017	1711	1693.89	17.11	1
28/12/2017	1615	1598.85	16.15	1
26/01/2018	1615	1598.85	16.15	1
19/02/2018	1687	1670.13	16.87	1
21/03/2018	1434	1419.66	14.34	1

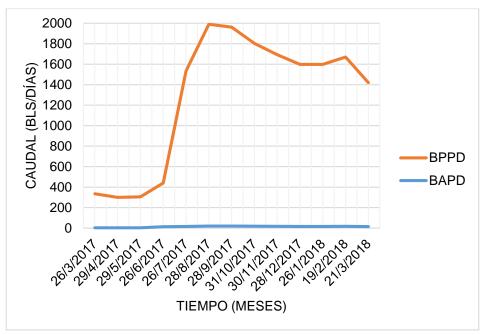


Figura 13. Historial de Producción Pozo DRRA-015UI

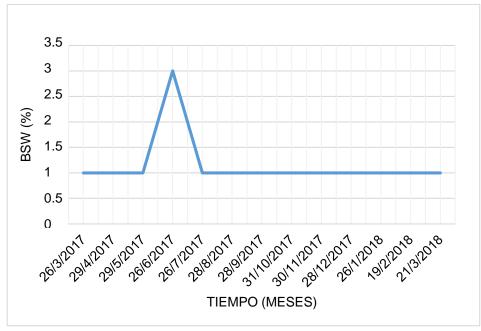


Figura 14. BSW DRRA-015UI

El redimensionamiento de la bomba electrosumergible se hizo con base en el cálculo de la cabeza total dinámica (Tabla 12), el cómputo de los cálculos se presenta en el Anexo 2.

Tabla 12. Cálculos TDH

POZO	DRRA-015UI	DRRD-028UI	DRRC-029UI
API	26.2	26	27.1
GRAVEDAD ESPECÍFICA DE PETRÓLEO	0.89724	0.89841	0.89218
FRACCIÓN DE CRUDO (%)	0.99	0.48	0.97
FRACCIÓN DE AGUA (%)	0.01	0.52	0.03
GRAVEDAD ESPECÍFICA DE LA MEZCLA	0.8987	0.9720	0.8966
GRADIENTE DE PRESIÓN DE INTAKE EN ALTURA (PIES)	1115.54396	955.33292	1074.33934
WELLHEAD (PIES)	102.82	237.65	360.69
PROFUNDIDAD CARA DE LA FORMACIÓN (PIES)	10302	10359	10112
NIVEL DINÁMICO (PIES)	9186.46	9403.66	9037.66
PÉRDIDAS POR FRICCIÓN (PIES)	73.69176	30.34691	3.35042
TDH (PIES)	9362.96	9401.70	9671.66

El dimensionamiento de la bomba se realizó a través del programa PIPESIM, con los datos previamente calculados; para ello se conoció el diagrama de los pozos candidatos (Anexo 4), en la Tabla 13 se detalla información referente a la profundidad y configuración de los pozos.

Tabla 13. Configuración de los pozos

PROFUNDIDAD (PIES)	DRRC-029UI	DRRD-028UI	DRRA-015UI
Casing Conductor	290	268	268
Casing superficial	5813	5904	5904
Camisa de circulación	9562	10089	8130
NO-GO	9594	10115	8264
ESP	9612	10211	8367
Tubing	9626	10148	8397
Intermedio	9658	9370	9189
Productor	10703	10900	10340

La grafica de desempeño de la bomba se obtuvo ingresando al software Pipesim los datos de: tubería, presión, temperatura, caudal máximo, índice de productividad y tipo de fluido, entre otros, los resultados se detallan a continuación.

Pozo DRRC-029UI

La producción promedio del pozo DRRC-029UI se encuentra entre los 270 a 320 bls/día, con un BSW del 3% y un API promedio de 27.1.

De acuerdo a la Figura 15, la bomba adecuada corresponde a la TD460 que trabaja en un rango de 300 a 600 bbl/día con una eficiencia del 55%, levantando 29 pies de fluido por etapa con una potencia de 0.16 HP por etapa.

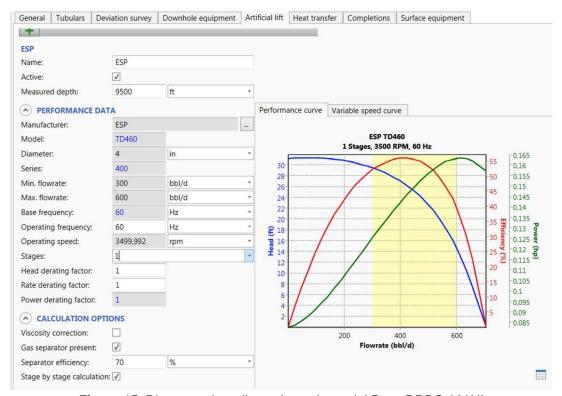


Figura 15. Diagrama de redimensionamiento del Pozo DRRC-029UI

Pozo DRRD-028UI

La producción promedio del pozo DRRD-028UI se encuentra entre los 800 a 900 bls/día, un BSW de 52% y un API promedio de 26.

De acuerdo a la Figura 16, la bomba adecuada es la RC1000 que trabaja en un rango de 200 a 1500 bbl/día con una eficiencia del 65%, levantando 30 pies de fluido por etapa con una potencia de 0.23 HP por etapa.

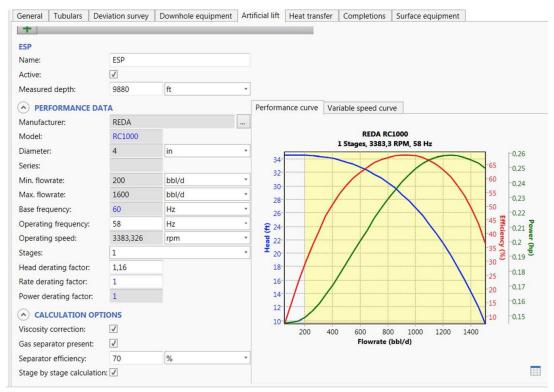


Figura 16. Diagrama de redimensionamiento del Pozo DRRD-028UI

Pozo DRRA-015UI

La producción promedio del pozo DRRA-015UI está entre los 1400 bls/día para un API promedio de 26.2 y un BSW de 1%.

De acuerdo a la Figura 17, la bomba adecuada es la DN1800 trabaja en un rango de 1200 a 2400 bbl/día con una eficiencia del 70% y levantando 21 pies de fluido por etapa, con una potencia de 0.31 HP por etapa.

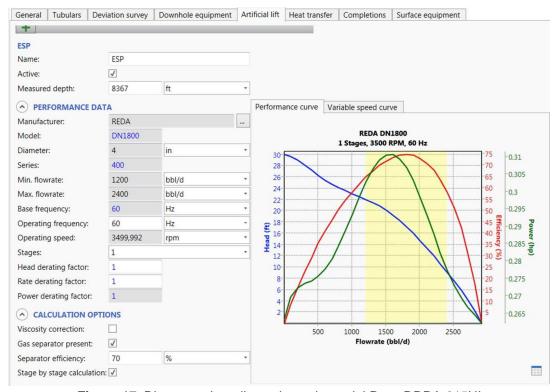


Figura 17. Diagrama de redimensionamiento del Pozo DRRA-015UI

La bomba TD460 del pozo DRRD-029UI requiere para su correcto funcionamiento 60 caballos de fuerza operando a 60 Hz y 3500 revoluciones por minuto; además se requier de 312 etapas para levantar 9307 pies de altura.

El pozo DRRA-015UI requiere de una bomba DN1800 funcionando a 60 Hz y 3500 rpm a su vez demanda 161 caballos de fuerza para levantar 9187 pies de altura contemplada en 437 etapas.

Para el pozo DRRD-028UI se determinó que la bomba adecuada para el funcionamiento es la RC1000 funcionando a 3383 revoluciones por minuto. Requiere de 68 caballos de fuerza para levantar 9404 pies de altura distribuidos en 248 etapas.

En la Tabla 14, se muestra los resultados correspondientes de la potencia total requerida y el número de etapas de los pozos seleccionados

Tabla 14. Potencia de la bomba y número de etapas

POZO	NÚMERO DE ETAPAS	POTENCIA (HP)	POTENCIA ADICIONAL (HP)
DRRA-015UI	236	70.66	14.13
DRRD-029UI	312	49.92	9.98
DRRD-028UI	247	56.91	11.38

3.4. ANÁLISIS ECONÓMICO COMPARATIVO

El costo para implementar un cambio de bomba electrosumergible en los pozos seleccionados del Campo Drago Norte representa una inversión inicial alta; en las Tablas 15 y 16, se muestra el número de etapas y la potencia requerida por el motor de la bomba electrosumergible. El número de etapas y potencia de la bomba actual fueron obtenidos de los diagramas de reacondicionamiento de los pozos Tabla 4.

Tabla 15. Número de etapas

NÚMERO DE ETAPAS					
POZO	BES ACTUAL	BES PROPUESTA			
DRRA-015UI	270	236			
DRRD029UI	234	312			
DRRD-028UI	372	247			

Tabla 16. Potencia requerida

POTENCIA REQUERIDA (HP)					
POZO	BES ACTUAL	BES PROPUESTA			
DRRA-015UI	350	85			
DRRD029UI	188	60			
DRRD-028UI	180	68			

Se estima que el costo de una bomba electrosumergible es de 150 USD por cada etapa y de 300 USD por cada HP requerido por el motor, en tal virtud para reemplazar las tres bombas sobredimensionadas de los pozos DRRA-015UI, DRRD-029UI, DRRD-028UI operados por Petroamazonas se requiere la inversión de 183078.96 USD. Los costos estimados por pozo se expresan en la Tabla 17:

Tabla 17. Costos de bomba BES

COSTOS DE BOMBA ELECTROSUMERGIBLE (USD)				
POZO	BES ACTUAL	BES PROPUESTO		
DRRA-015UI	145500	60771.93		
DRRD029UI	91500	64697.18		
DRRD-028UI	109800	57609.83		

El requerimiento de energía para el funcionamiento de las bombas actuales y propuestas se detalla en la Tabla 18, éste se calcula mediante la conversión de caballos de fuerza de motor (HP) a su equivalente en kilo vatios (kW), obteniendo un total de 158.78 kW para los tres pozos candidatos.

Tabla 18. Requerimiento de energía

REQUERIMIENTO DE ENERGIA (kW)				
POZO BES ACTUAL BES PROPUESTO				
DRRA-015UI	261	63.23		
DRRD029UI	140.20	44.61		
DRRD-028UI	134.23	50.93		

El consumo anual neto de energía se calculó mediante la ecuación 10 y multiplicándolo por 24 horas y por 365 días que es el tiempo estimado de vida útil de la bomba electrosumergible. (Ministerio de energía y recursos naturales no renovables, 2017).

En la Tabla 19 se detalla la comparación del consumo de energía eléctrica de la bomba actual y de la propuesta.

Tabla 19. Costo de consumo de energía

	BES ACTUAL		BES PRO	PUESTO
POZO	CONSUMO ENERGÍA DÍAS (USD)	CONSUMO ENERGÍA AÑO (USD)	CONSUMO ENERGÍA DÍAS (USD)	CONSUMO ENERGÍA AÑO (USD)
DRRA-015UI	584.42	213313.30	141.59	51681.58
DRRD-029UI	313.91	114579.71	99.91	36467.76
DRRD-028UI	300.55	109703.98	1144	41626.76
TOTAL		437597		129776.10

Los costos asociados a un Pulling convencional de las bombas que se encuentran operando actualmente en los pozos candidatos se obtuvieron del "Programa alcance de reacondicionamiento de los pozos seleccionados" tomando los costos del último trabajo de reacondicionamiento de los pozos y de costos sugeridos de un Pulling de Bes detallados en las Tablas 20, 21 y 22 (Agencia de Regulación y Control Hidrocarburifera, 2017).

 Tabla 20. Costos estimados de Pulling de la Bomba actual del Pozo DRRA-015UI

	Jostos estimados de 1 diling de				
EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0.9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSP-3866) 3.5"	6310	1	EA	6310
Completación	No-Go 3-1/2" (NPA-0117)	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	83200	1	EA	83200
SUBTOTAL SIN IVA			347817		
				TOTAL	389555.04

Tabla 21. Costos estimados de Pulling de la Bomba actual del Pozo DRRC-029UI

	Dostos estimados de i diling de				
EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0.9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSC-D023) 3.5"	6310	1	EA	6310
Completación	No-Go 3-1/2" Eue CEC- 102813	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	91500	1	EA	91500
		S	UBTOTA	L SIN IVA	356117
				TOTAL	398851.04

Tabla 22. Costos estimados de Pulling de la Bomba actual del Pozo DRRD-028UI

EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0.9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSC-0124) 3-1/2"	6310	1	EA	6310
Completación	No-Go 3-1/2" (NPA-0117)	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	74000	1	EA	74000
		S	UBTOTA	L SIN IVA	338617
				TOTAL	379251.04

A continuación, en las Tablas 23, 24 y 25, se detalla el presupuesto para la implementación de las bombas propuestas. En resumen, el costo total para el reacondicionamiento de los 3 pozos sería de 1101913.12 USD (Agencia de Regulación y Control Hidrocarburifera, 2017).

Tabla 23. Costos estimados de Pulling de la bomba propuesta – Pozo DRRA-015UI

Tabla 23. C	ostos estimados de Pulling de		i opuesia -	- 1 020 DIXI	(A-01301
EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0.9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSP-3866) 3.5"	6310	1	EA	6310
Completación	No-Go 3-1/2" (NPA-0117)	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	62000	1	EA	62000
SUBTOTAL SIN IVA			326617		
				TOTAL	365811.04

Tabla 24. Costos estimados de Pulling de la bomba propuesta – Pozo DRRC-029UI

EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0,9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSC-D023) 3.5"	6310	1	EA	6310
Completación	No-Go 3-1/2" Eue CEC- 102813	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	67000	1	EA	67000
		S	UBTOTA	L SIN IVA	331617
				TOTAL	371411.04

Tabla 25. Costos estimados de Pulling de la bomba propuesta – Pozo DRRD-028UI

1 0.010. 201 0	ostos estimados de r diling de		орисски	1 020 DIXI	(2 0200)
EVENTO	DESCRIPCIÓN	P. UNIT. SIN IVA (USD)	CANT.	UNIDAD	TOTAL SIN IVA (USD)
Generales	Diésel para taladro	0.9	350	GAL	315
Generales	Rig Day & Rig up	9300	2	Día	18600
Generales	Renta Vacuum	4300	1	EA	4300
Generales	Lucro cesante	46300	1	-	46300
Pulling	Servicio de Slick Line	160	24	Horas	3840
Movilización	Movimiento de torre de workover	10200	1	Día	10200
Movilización	Servicio de transporte de taladro	1290	1	Día	1290
Completación	Transporte Slick line	148	24	Horas	3552
Completación	Rig up & Rig Day	9300	1	Día	9300
Completación	Inspección Tubulares 2-7/8" Eue 6.5 lb/ft, L-80 en boca de pozo	255	18	EA	4590
Completación	Inspección tubulares 3-1/2" Eue 9.3 lb/ft, N80 en boca de pozo	380	317	EA	120460
Completación	Mantenimiento y reparación de Cabezal	5800	1	EA	5800
Completación	Mantenimiento y reparación de camisa 2-3/8" (S-SP)	3300	1	EA	3300
Completación	X-Over 2-3/8" x 3-1/2" Eue Bxp	760	1	EA	760
Completación	Mantenimiento y reparación Camisa (SSC-0124) 3-1/2"	6310	1	EA	6310
Completación	No-Go 3-1/2" (NPA-0117)	1200	1	EA	1200
Completación	Cambio de armadura y chapa de Cable de potencia AGW N° 2	5	4900	Pies	24500
Completación	Reparación componentes Bes	61000	1	EA	61000
SUBTOTAL SIN IVA			325617		
				TOTAL	364691.04

La ejecución de un Pulling BES toma en promedio 2 días y con el fin de evitar problemas al momento de calcular el volumen de fluido perdido por la compañía, se considera el lucro cesante de cada uno de los pozos y se espera a que estos ingresen a trabajos de reacondicionamiento de forma natural para la implementación de los cambios sugeridos. Se considera que el tiempo de espera para que los pozos entren a trabajo de workover será corto debido a que las condiciones de las bombas no son las adecuadas, es decir, están sobredimensionadas, lo cual acorta el run life de los equipos de fondo.

Como resultado del análisis final se determina que los costos para la implementación de las mejoras propuestas para el sistema de producción son menores, respecto de los costos que supone mantener la completación actual electrosumergible.

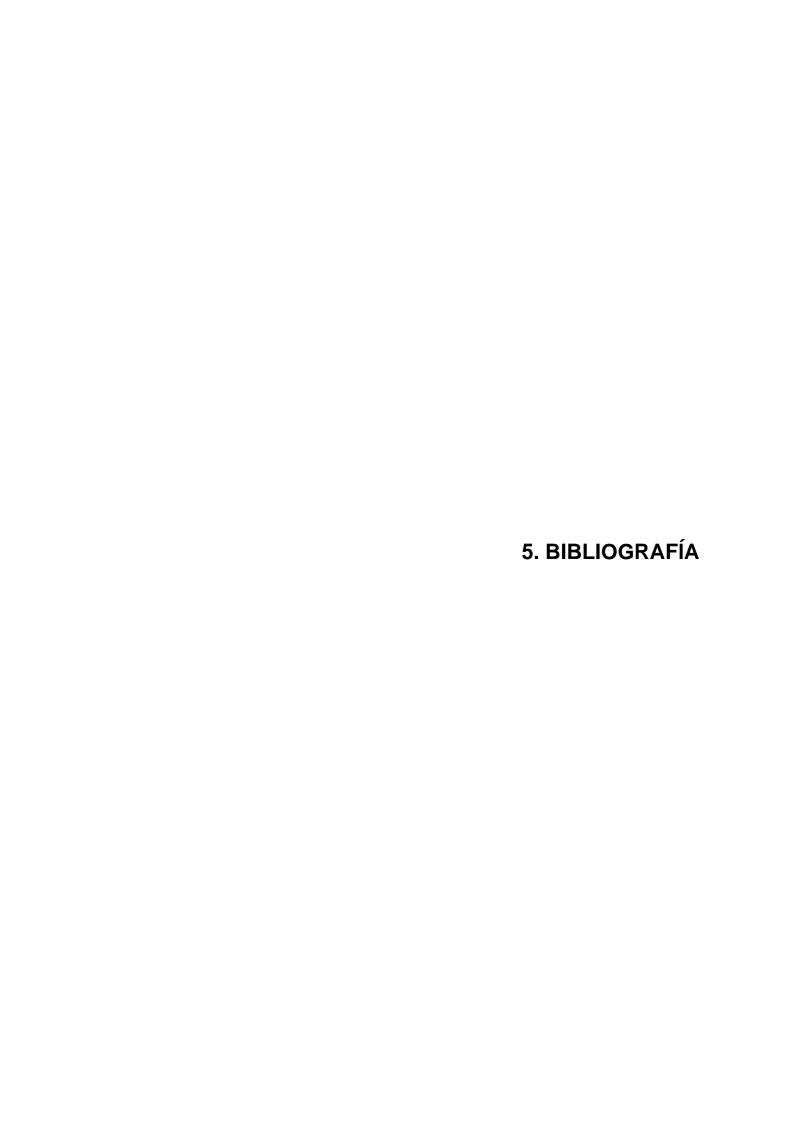
Los costos de implementación comprenden costos OPEX, al tratarse de un Pulling de BES, enumera costos referenciales de inspección, mantenimiento, transporte, reparación y alquiler de equipo. Estos costos se encuentran detallados en las Tablas 23, 24 y 25 (Lopez, 2010).

A continuación, en la Tabla 26 se detalla un ahorro anual 65744 USD después de la implementación de la bomba propuesta respecto de las que actualmente están operando; así como también, un ahorro de 307821 USD.

Tabla 26. Resumen comparativo de costos actuales y propuestos

COSTOS DE IMPLEMENTACIÓN	COMPLETACIÓN ACTUAL	COMPLETACIÓN PROPUESTA
Costo anual de los 3 pozos candidatos	1167657.12	1101913.12
Ahorro en el reacondicionamiento	-	65744
Costo anual de energía	4375971	129776.10
Ahorro de energía	-	307821

4. CONCLUSIONES Y RECOMENDACIONES


4. CONCLUSIONES Y RECOMENDACIONES

4.1. CONCLUSIONES

- ✓ Al analizar las características de los pozos seleccionados se determinó que las bombas electrosumergibles que actualmente operan en los pozos Drago Norte 15, 28 y 29 se encuentran operando en Downtrust, por lo que requieren un redimensionamiento de las bombas
- ✓ Mediante la simulación con el software PIPESIM se estableció que los pozos Drago Norte 15, 28 y 29, se encuentran sobredimensionados ocasionando un 30% adicional de consumo de energía.
- ✓ Se comprobó que la potencia necesaria de las bombas electrosumergibles de los pozos Drago Norte 15, 28 y 29 es de 86 HP, 60 HP y 68 HP respectivamente, lo cual se traducen en 129 776.11 kW como gasto energético durante un año.
- ✓ El análisis económico concluyó que la implementación de la bomba electrosumergible propuesta es económicamente rentable, debido a que como resultado del análisis costo – beneficio, la inversión requerida constituye un tercio del ahorro total obtenido tras el cambio de bomba.

4.2. RECOMENDACIONES

- ✓ La implementación de la bomba electrosumergible propuesta se recomienda hacerla cuando los pozos entren en trabajos de reacondicionamiento con el fin de optimizar recursos de mantenimiento.
- ✓ De acuerdo a la simulación con PIPESIM se recomienda la instalación de la bomba Dn1800 de 236 etapas y 85 HP en el pozo Drago Norte 15, la bomba TD460 de 312 etapas y 60 HP en el pozo Drago Norte 29 y la bomba RC100 de 247 etapas y 68 HP en el pozo Drago Norte 28.
- ✓ Se recomienda realizar un análisis periódico de los pozos productores del Campo Drago Norte si la arena productora ha sido fracturada recientemente, ya que los parámetros en los rangos de operación de la bomba electrosumergible ya no se ajustan a las condiciones del pozo e influye directamente en la producción de los pozos.

5. BIBLIOGRAFÍA

- Abel, N. A. (2014). *Indice de productividad y curvas de comportamiento de afluencia*. Medellin: Universidad Nacional de Colombia.
- Agencia de Regulación y Control Hidrocarburifera. (2017). *Programa alcance de reacondicionamiento, terminación y pruebas iniciales.* Quito.
- Agencia de Regulación y Control Hidrocarburífero. (2017). Resultados de reacondicionamiento en el Campo Shushufindi. Quito: Departamento de Exploración y Explotación.
- Atoyebi, A., Akinnuli, B., & Ajobo, J. (2015). Total Dynamic Head Determination Model for Submersible Pumps Installation. *International Journal of Applied Science and Technology*, *5*(1), 95-102.
- Bailey, B. (2010). Oilfield Review. Obtenido de water control: https://www.slb.com/~/media/Files/resources/oilfield_review/ors00/spr 00/p30_51.pdf
- Beggs, H. D. (2003). *Production Optimization Using Nodal Analysis.* Tulsa, oklahoma: OGCI and Petroskills Publications.
- Camargo, E., Aguilar, J., & Addison y Rivas, F. (2009). Un modelo de producción de pozos por levantamiento artificial. *Revista Ciencia e Ingeniería*, 30(1), 23-28.
- Da Silva, Á. (2009). *La Comunidad Petrolera*. Obtenido de La Comunidad Petrolera Sitio Web: https://www.lacomunidadpetrolera.com/2009/05/reacondicionamiento-de-pozos-petroleros.html
- Escalante, S. (2015). *EduBlog UNELLEZ*. Recuperado el 25 de Diciembre de 2017, de UNELLEZ: http://blogs.unellez.edu.ve/sharon/files/2014/01/Guia-4-BES-SEP-2015.pdf
- Hirchfelt, M. (2010). *Esp Diseño basico y selección*. Obtenido de Oilproduction.net: http://www.oilproduction.net/files/004-ESPdesign.pdf
- Hirschfeldt, M. (2009). *Análisis Nodal hirschfeldt*. Recuperado el 12 de Febrero de 2017, de http://oilproduction.net: http://oilproduction.net/files/analisis_nodal_hirschfeldt.pdf
- Hirschfelt, M., & Ruiz, R. (2008). *Conceptos well performance*. Obtenido de Oilproduction.net:

 http://oilproduction.net/files/conceptos_well_performance.pdf
- Hirschfelt, M., & Ruiz, R. (Septimbre de 2008). *Todo sobre el Upstream:*OilProduction.net . Obtenido de Oilproduction.net:

 http://oilproduction.net/files/conceptos_well_performance.pdf
- Lopez, F. J. (2010). Costos ABC y Presupuestos Herramientas para la productividad . Bogotá : ECOE.
- Maggiolo, R. (2008). Optimización de la Producción mediante Análisis Nodal. ESP OIL Engineering Consultants, 115-116.

- McCoy, K. P. (1 de Abril de 2016). ESP pump selection, evaluation improve well flow volumes. Obtenido de Oil and Gas Journal: https://www.ogj.com/articles/print/volume-114/issue-1/drillingproduction/esp-pump-selection-evaluation-improve-well-inflowvolumes.html
- Ministerio de energía y recursos naturales no renovables. (2017). *Calcular consumo*. Obtenido de Centrosur: http://www.centrosur.gob.ec/calcular-consumo
- Nind, T. (2010). Fundamentos de Producción y Mantenimiento de pozos petroleros. Ontario: Limusa. Recuperado el 11 de Enero de 2018
- Petroamazonas EP. (2012). *Plan de Desarrollo Campo Drago.* Quito. Recuperado el 17 de Noviembre de 2017, de http://bibdigital.epn.edu.ec: http://bibdigital.epn.edu.ec/bitstream/15000/4581/1/CD-4207.pdf
- Ramírez, M. (2004). *ESP OIL Engineering Consultants*. Recuperado el Febrero de 2017, de http://www.espoil.net/: https://www.4shared.com/web/preview/pdf/PdwoAJ50
- Schlumberger. (2007). Schlumberger Software. Recuperado el 25 de Diciembre de 2017, de https://www.software.slb.com/: https://www.academia.edu/7759106/PIPESIM
- Schlumberger. (2015). Definición de levantamien to artificial. *Oilfield Review* 27, 58-60. Recuperado el Febrero de 2017, de https://www.slb.com/-/media/Files/resources/oilfield_review/defining-series-spanish/Defining_Artificial_Lift_Dec_2015.pdf?la=en&hash=18F733D E707A37A097E332A114A80C06569B60BB
- Schlumberger information solutions. (2010). *Pipesim Fundamentals*. Houston TX.
- Schlumberger: Pipesim. (2017). PIPESIM Software. Recuperado el Junio de 2018, de https://www.software.slb.com/products/pipesim/pipesim-2017
- Takacs, G. (2011). How to improve poor system efficiencies of ESP installations controlled by surface chokes. *Journal of Petroleum Exploration and Production Technology*, 89-97.
- Zambrano, H. (2011). *Análisis nodal*. Recuperado el 25 de Diciembre de 2017, de https://www.dspace.espol.edu.ec/bitstream/123456789/20218/1/TESIS%20ANALISIS%20NODAL%20TODOS%20LOS%20CAPITULOS.pdf

6. ANEXOS

6. ANEXOS

ANEXO 1. CÁLCULO DE ÍNDICE DE PRODUCTIVIDAD

1. ÍNDICE DE PRODUCTIVIDAD

$$J = \frac{Q}{P_s - P_{wf}} \left[\frac{Bppd}{Psi} \right]$$
 [1]

Dónde:

J: Índice de productividad (Bppd/día)

Q: Caudal (Bppd)

Ps: Presión estática (Psi)

Pwf: Presión de fondo fluyente (Psi)

2. ÍNDICE DE PRODUCTIVIDAD PARA YACIMIENTO SATURADO

$$J = \frac{Q}{Omax} \left[\frac{Bppd}{Psi} \right]$$
 [2]

Dónde:

J: Índice de productividad (Bppd/día)

Q: Caudal (Bppd/día)

Qmax: Caudal máximo (Bppd/días)

2.1. ÍNDICE DE PRODUCTIVIDAD POZO DRRC-029UI

$$J = \frac{277}{313.85} \left[\frac{Bppd}{Psi} \right]$$

$$J = 0.88825 \left[\frac{Bppd}{Psi} \right]$$

2.2. ÍNDICE DE PRODUCTIVIDAD POZO DRRA-015UI

$$J = \frac{1434}{1638.5} \left[\frac{Bppd}{Psi} \right]$$

$$J = 0.8751 \left[\frac{Bppd}{Psi} \right]$$

2.3. ÍNDICE DE PRODUCTIVIDAD POZO DRRA-015UI

$$J = \frac{885}{995.56} \left[\frac{Bppd}{Psi} \right]$$

$$J = 0.8889 \left[\frac{Bppd}{Psi} \right]$$

3. CAUDAL MÁXIMO

$$Qmax = \frac{Qo}{1 - 0.2 \times \frac{Pwf}{Pr} - 0.8 \times \frac{Pwf}{Pr}} [Bls/dia]$$
[3]

Dónde:

Pr: Presión de reservorio (Psi)

Pwf: Presión de fondo fluyente (Psi)

3.1. CAUDAL MÁXIMO POZO DRRC-029UI

$$Qmax = \frac{277}{1 - 0.2 \times \frac{417}{1500} - 0.8 \times \frac{417}{1500}^2}$$

$$Qmax = 313.855 (Bls/dia)$$

3.2. CAUDAL MÁXIMO POZO DRRA-015UI

$$Qmax = \frac{1434}{1 - 0.2 \times \frac{434}{1500} - 0.8 \times \frac{434}{1500}^{2}}$$

$$Qmax = 1638.55 (Bls/dia)$$

3.3. CAUDAL MÁXIMO POZO DRRD-028UI

$$Qmax = \frac{885}{1 - 0.2 \times \frac{402}{1500} - 0.8 \times \frac{402}{1500}^{2}}$$

$$Qmax = 1638.55 (Bls/dia)$$

ANEXO 2. CÁLCULO DE LA ALTURA TOTAL DINÁMICA

1. GRAVEDAD ESPECÍFICA DEL PETRÓLEO

$$Ge_o = \frac{141.5}{131.5 + API}$$
 [4]

Dónde:

Geo: Gravedad especifica del petróleo

API: American Petroleum Institute Density

1.1. GRAVEDAD ESPECÍFICA DEL PETRÓLEO DRRC-029UI

$$Ge_o = \frac{141.5}{131.5 + 27.1}$$

$$Ge_o = 0.89218$$

1.2. GRAVEDAD ESPECÍFICA DEL PETRÓLEO DRRA-015UI

$$Ge_o = \frac{141.5}{131.5 + 26.2}$$

$$Ge_o = 0.8972$$

1.3. GRAVEDAD ESPECÍFICA DEL PETRÓLEO DRRD-028UI

$$Ge_o = \frac{141.5}{131.5 + 26}$$

$$Ge_o = 0.8984$$

2. GRAVEDAD ESPECÍFICA DE LA MEZCLA

$$Ge_m = F_{0\%} \times Ge_0 + F_{w\%} \times Ge_w$$
 [5]

Dónde:

Gem: Gravedad especifica de la mezcla

Fo%: Fracción de petróleo Fw%: Fracción de agua

Geo: Gravedad especifica de petróleo Gew: Gravedad especifica del agua

2.1. GRAVEDAD ESPECÍFICA DE LA MEZCLA DRRC-029UI

$$Ge_m = 0.97 \times 0.89218 + 03 \times 14$$

$$Ge_m = 0.89661$$

2.2. GRAVEDAD ESPECÍFICA DE LA MEZCLA DRRD-028UI

$$Ge_m = 0.48 \times 0.89841 + 0.52 \times 14$$

$$Ge_m = 0.9720$$

2.3. GRAVEDAD ESPECÍFICA DE LA MEZCLA DRRA-015UI

$$Ge_m = 0.99 \times 0.8972 + 01 \times 14$$

$$Ge_m = 0.8987$$

3. PRESIÓN INTAKE EN ALTURA

$$Pi_a = 2.33 \times \frac{Pwf}{Ge_m}$$
 [6]

Donde:

Pia: Presión de Intake en Altura (Pies)Pwf: Presión de fondo fluyente (Psi)Gem: Gravedad especifica de la mezcla

3.1. PRESIÓN INTAKE EN ALTURA DRRC-029UI

$$Pi_a = 2.33 \times \frac{417}{0.89661}$$

$$Pi_a = 1074.33 \, Pies$$

3.2. PRESIÓN INTAKE EN ALTURA DRRD-028UI

$$Pi_a = 2.33 \times \frac{402}{0.9720}$$

$$Pi_a = 995.33 \ Pies$$

3.3. PRESIÓN INTAKE EN ALTURA DRRA-015UI

$$Pi_a = 2.33 \times \frac{434}{0.8987}$$

$$Pi_a = 115.54 Pies$$

4. PÉRDIDAS POR FRICCIÓN

$$f = \frac{2.083 \times \left(\frac{100}{c}\right)^{1.852} \left(\frac{Q}{34.3}\right)^{1.852}}{ID^{4.65}} [Pies]$$
 [7]

$$Pf = \frac{f}{1000} \times Ps$$

Dónde:

Pf: Pérdidas por fricción (Pies)

Q: Caudal (bls)

C: 120

ID: Diámetro de tubería (pulgadas)

4.1. PÉRDIDAS POR FRICCIÓN DRRC-029UI

$$f = \frac{283 \times \left(\frac{100}{120}\right)^{1.852} \left(\frac{277}{34.3}\right)^{1.852}}{2.992^{4.865}}$$

$$Pf = \frac{0.34384}{1000} \times 9744$$

$$Pf = 3.3504 Pies$$

4.2. PÉRDIDAS POR FRICCIÓN DRRD-028UI

$$f = \frac{283 \times \left(\frac{100}{120}\right)^{1.852} \left(\frac{885}{34.3}\right)^{1.852}}{2.992^{4.865}}$$

$$Pf = \frac{2.9554}{1000} \times 9744$$

$$Pf = 30.3469 Pies$$

4.3. PÉRDIDAS POR FRICCIÓN DRRA-015UI

$$f = \frac{283 \times \left(\frac{100}{120}\right)^{1.852} \left(\frac{1434}{34.3}\right)^{1.852}}{2.992^{4.865}}$$

$$Pf = \frac{7.2246}{1000} \times 9744$$

$$Pf = 73.6917 Pies$$

5. PRESIÓN DE CABEZA EN ALTURA

$$Pca = Pc \times \frac{2.31}{Ge_m}$$
 [8]

Dónde:

Pca: Presión de cabeza en altura (Pies)

Pc: Presión de cabeza (Psi)

Gem: Gravedad especifica de la mezcla

5.1. PRESIÓN DE CABEZA EN ALTURA DRRC-029UI

$$Pca = 140 \times \frac{2.31}{0.89661}$$

$$Pca = 360.68 Pies$$

5.2. PRESIÓN DE CABEZA EN ALTURA DRRA-015UI

$$Pca = 40 \times \frac{2.31}{0.8987}$$

$$Pca = 102.81 Pies$$

5.3. PRESIÓN DE CABEZA EN ALTURA DRRD-028UI

$$Pca = 100 \times \frac{2.31}{0.9720}$$

$$Pca = 237.64 Pies$$

6. NIVEL DINÁMICO DE FLUIDO

$$Nvl = Prof_f - Pi_a$$
 [9]

Dónde:

Nvl: Nivel dinámico de fluido (Pies)Proff: Profundidad de la formación (Pies)Pia: Presión de Intake en Altura (Pies)

6.1. NIVEL DINÁMICO DE FLUIDO DRRA-015UI

$$Nvl = 10302 - 1115.54$$

$$Nvl = 9186.45 Pies$$

6.2. NIVEL DINÁMICO DE FLUIDO DRRC-029UI

$$Nvl = 10112 - 1074.33$$

$$Nvl = 9036.66 Pies$$

6.3. NIVEL DINÁMICO DE FLUIDO DRRD-028UI

$$Nvl = 10359 - 995.33$$

$$Nvl = 9403.66 Pies$$

7. ALTURA TOTAL DINÁMICA (TDH)

$$TDH = Nvl + Pf + Pc_a (Pies)$$
 [10]

Dónde:

Nvl: Nivel dinámico de fluido Pf: Pérdidas por fricción

Pca: Presión de cabeza en altura

7.1. ALTURA TOTAL DINÁMICA (TDH) DRRC-029UI

$$TDH = 9037.66 + 3.3504 + 360.68360.68$$

$$TDH = 9401.70 Pies$$

7.2. ALTURA TOTAL DINÁMICA (TDH) DRRD-028UI

$$TDH = 9403.66 + 30.346917 + 237.6450$$

$$TDH = 9671.65 Pies$$

7.3. ALTURA TOTAL DINÁMICA (TDH) DRRA-015UI

$$TDH = 9186.4560 + 73.6917 + 102.8151$$

$$TDH = 9362.96 Pies$$

ANEXO 3. CÁLCULO DE NÚMERO DE ETAPAS

1. NÚMERO DE ETAPAS

$$Etapas = \frac{TDH}{Ppe}$$
 [11]

Dónde:

TDH: Cabeza Total Dinámica

Ppe: Pies por etapa

1.1. NÚMERO DE ETAPAS DRRC-029UI

$$Etapas = \frac{9401.70}{29}$$

$$etapas = 312$$

1.2. NÚMERO DE ETAPAS DRRA-015UI

$$Etapas = \frac{9186.45}{39}$$

$$etapas = 236$$

1.3. NÚMERO DE ETAPAS DRRD-028UI

$$Etapas = \frac{9403.65}{38}$$

$$etapas = 248$$

2. POTENCIA REQUERIDA DE LA BOMBA

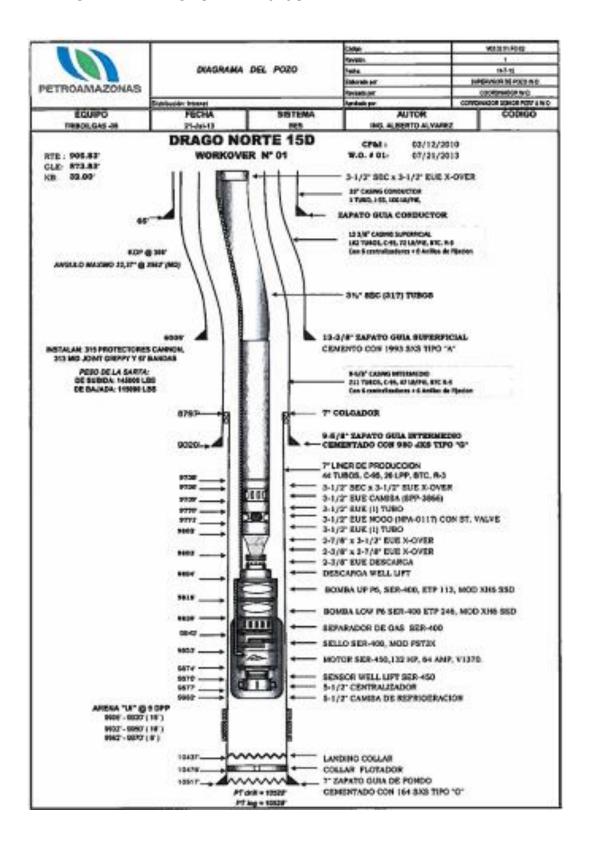
$$Pr_* = etapas \times potencia$$
 [12]

$$Pr_t = 49.92 + (Pr_* \times 0.20)$$

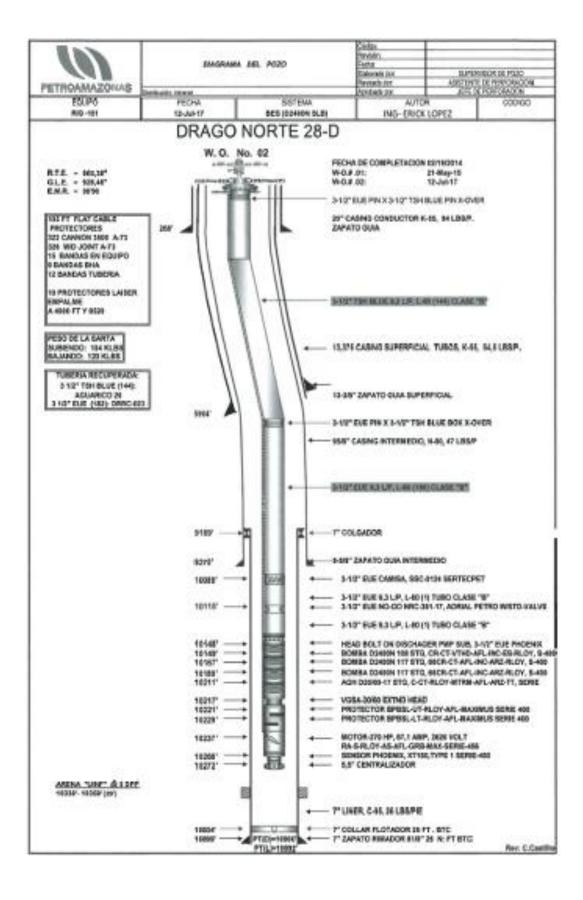
2.1. POTENCIA REQUERIDA DE LA BOMBA DRRC-029UI DRRD-028UI DRRA-015UI

$$Pr_* = 312 \times 0.16$$
 $Pr_* = 49.92$ $Pr_t = 49.92 + (Pr_* \times 0.20)$ $Pr_t = 60 \, Hp$

2.2. POTENCIA REQUERIDA DE LA BOMBA DRRC-029UI DRRD-028UI DRRA-015UI


$$Pr_* = 354 \times 0.3$$
 $Pr_* = 70.66 \, Hp$ $Pr_t = 70.66 + (Pr_* \times 0.20)$ $Pr_t = 85 \, Hp$

2.3. POTENCIA REQUERIDA DE LA BOMBA DRRC-029UI DRRD-028UI DRRA-015UI

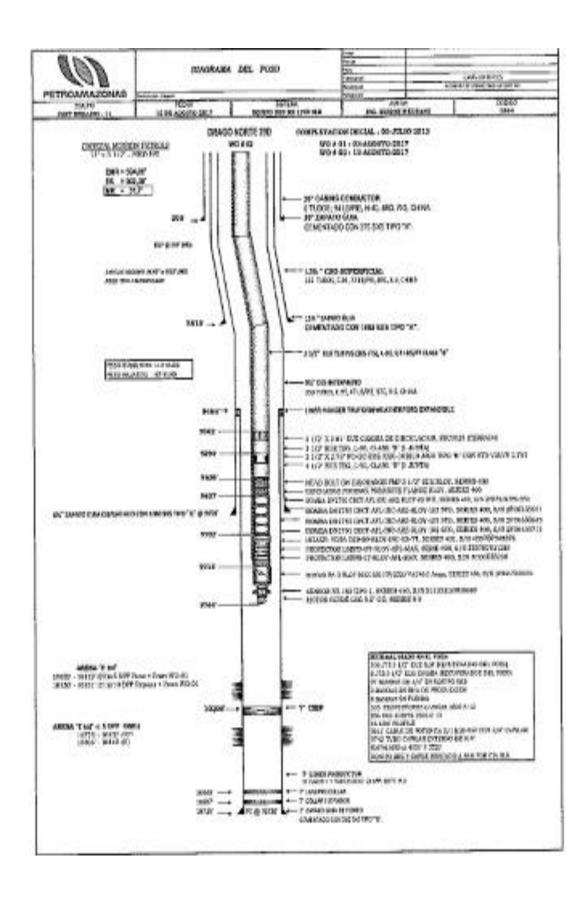

$$Pr_* = 248 \times 0.23$$

$$Pr_* = 57 Hp$$

$$Pr_t = 57 + (Pr_* \times 0.20)$$

$$Pr_t = 68 Hp$$

ANEXO 4. DIAGRAMA DE POZOS


1. DIAGRAMA DE POZO DRRA-015UI

2. DIAGRAMA DE POZO DRRC-028UI

3. DIAGRAMA DE POZO DRRD-029UI

